If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-108=0
a = 9; b = 0; c = -108;
Δ = b2-4ac
Δ = 02-4·9·(-108)
Δ = 3888
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3888}=\sqrt{1296*3}=\sqrt{1296}*\sqrt{3}=36\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{3}}{2*9}=\frac{0-36\sqrt{3}}{18} =-\frac{36\sqrt{3}}{18} =-2\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{3}}{2*9}=\frac{0+36\sqrt{3}}{18} =\frac{36\sqrt{3}}{18} =2\sqrt{3} $
| 8x−3(2x−4)=3(x−6) | | -2x^2+4=-86 | | 7(4x-3)-4(3x+8)+25=3(4x+9)-43 | | 12x^2+29x=30+2x^2+9x | | 9+4x^2=57 | | .0005x=100000 | | 7z/12=6z/8 | | Z=5-9i | | 3y=-1+10 | | 3y+-1=10 | | p=72p+9 | | b3+ 11=14 | | (4x+1)/7=(x-2) | | 4x+1=12-4x | | x–3-8=1 | | (D^3-4D^2+6D-4)y=0 | | 31/93=8/x | | -33-5x=(-5+2x) | | 3(1+2a)+2=17+3a | | 5p+7=3p-3 | | 10+6a=4+7a | | -27=8-(x-19) | | -13+2x=x-7 | | -90=6(x-8) | | 4(-2-8n)+6n=-164 | | 4(-2-8n)=6n=-164 | | 198=-6(2+5r) | | 4x+(3x+5)=1 | | 5-2b+5=-6 | | 3/10x-2/3=-1 | | 18–5x=23 | | 4–6x=-8 |